	Bedriftens navn:	BAT-konklusjoner for avfallsbehandling Indre Østfold Renovasjon IKS
Kapitler for BAT-konklusjoner	BAT-konklusjon nr.	BAT-konklusjoner med beskrivelse av teknikk
1. GENERAL BAT CONCLUSIONS		
1.1. Overall environmental performance	BAT 1.	 In order to improve the overall environmental performance, BAT is to implement and adhere to an environmental management system (EMS) that incorporates all of the following features: I. commitment of the management, including senior management; II. definition, by the management, of an environmental policy that includes the continuous improvement of the environmental performance of the installation;
		III. planning and establishing the necessary procedures, objectives and targets, in conjunction with financial planning and investment;

IV. implementation of procedures paying particular attention to:

(a) structure and responsibility,

(b) recruitment, training, awareness and competence,

(c) communication,

(d) employee involvement,

(e) documentation,

(f) effective process control,

(g) maintenance programmes,

(h) emergency preparedness and response,

(i) safeguarding compliance with environmental legislation;

V. checking performance and taking corrective action, paying particular attention to:
 (a) monitoring and measurement (see also the JRC Reference Report on Monitoring of emissions to air and water from IED-installations – ROM),

(b) corrective and preventive action,

(c) maintenance of records,

(d) independent (where practicable) internal or external auditing in order to determine whether or not the EMS conforms to planned arrangements and has been properly implemented and maintained;

VI. review, by senior management, of the EMS and its continuing suitability, adequacy and effectiveness;

	VII. following the development of cleaner technologies;
	 VIII. consideration for the environmental impacts from the eventual decommissioning of the plant at the stage of designing a new plant, and throughout its operating life; IX. application of sectoral benchmarking on a regular basis. X. waste stream management (see BAT 2); XI. an inventory of waste water and waste gas streams (see BAT 3) XII. residues management plan (see description in Section 6.6.5); XIII. accident management plan (see BAT 12); XIV. odour management plan (see BAT 12);
	XV. noise and vibration management plan (see BAT 17); <i>Applicability</i> The scope (e.g. level of detail) and nature of the EMS (e.g. standardised or non- standardised) will generally be related to the nature, scale and complexity of the installation, and the range of environmental impacts it may have (determined also by
BAT 2.	 the type and amount of wastes processed). In order to improve the overall environmental performance of the plant, BAT is to use all of the techniques given below. a. Set up and implement waste characterisation and pre-acceptance procedures
	b. Set up and implement waste acceptance procedures

	c. Set up and implement a waste tracking system and inventory
	 d. Set up and implement an output quality management system e. Ensure waste segregation
	f. Ensure waste compatibility prior to mixing or blending of waste
	g. Sort incoming solid waste
BAT 3.	In order to facilitate the reduction of emissions to water and air. BAT is to establish
	and to maintain an inventory of waste water and waste gas streams, as part of the environmental management system (see BAT 1), that incorporates all of the following features:
	(i) information about the characteristics of the waste to be treated and the waste treatment processes, including:
	(a) simplified process flow sheets that show the origin of the emissions;
	(b) descriptions of process-integrated techniques and waste water/waste gas treatment at source including their performances:
	(ii) information about the characteristics of the waste water streams, such as: (a) average values and variability of flow, pH, temperature, and conductivity;
	(b) average concentration and load values of relevant substances and their variability (e.g. COD/TOC, nitrogen species, phosphorus, metals, priority substances / micropollutants);

	 (iii) information about the characteristics of the waste gas streams, such as: (a) average values and variability of flow and temperature; (b) average concentration and load values of relevant substances and their variability (e.g. organic compounds, POPs such as PCBs); (c) flammability, lower and higher explosive limits, reactivity; (d) presence of other substances that may affect the waste gas treatment system or plant safety (e.g. oxygen, nitrogen, water vapour, dust).
BAT 4.	In order to reduce the environmental risk associated with the storage of waste, BAT is to use all of the techniques given below. a. Optimised storage location
	b. Adequate storage capacity
	c. Safe storage operation
	d. Separate area for storage and handling of packaged hazardous waste
BAT 5.	In order to reduce the environmental risk associated with the handling and transfer of waste, BAT is to set up and implement handling and transfer procedures.
	Description
	Handling and transfer procedures aim to ensure that wastes are safely handled and transferred to the respective storage or treatment. They include the following elements:
	 - handling and transfer of waste are carried out by competent staff; - handling and transfer of waste are duly documented, validated prior to execution
	and verified after execution;
	 measures are taken to prevent, detect and mitigate spills; operation and design precautions are taken when mixing or blending wastes (e.g. vacuuming dusty/powdery wastes).
	Handling and transfer procedures are risk-based considering the likelihood of accidents and incidents and their environmental impact.

1.2. Monitoring	BAT 6.	For relevant emissions to water as identified by the inventory of waste water streams (see BAT 3), BAT is to monitor key process parameters (e.g. waste water flow, pH, temperature, conductivity, BOD) at key locations (e.g. at the inlet and/or outlet of the pretreatment, at the inlet to the final treatment, at the point where the emission leaves the installation).
	BAT 7.	BAT is to monitor emissions to water with at least the frequency given below, and in accordance with EN standards. If EN standards are not available, BAT is to use ISO, national or other international standards that ensure the provision of data of an equivalent scientific quality.
	BAT 8.	BAT is to monitor channelled emissions to air with at least the frequency given below, and in accordance with EN standards. If EN standards are not available, BAT is to use ISO, national or other international standards that ensure the provision of data of an equivalent scientific quality.
	BAT 9.	 BAT is to monitor diffuse emissions of organic compounds to air from the regeneration of spent solvents, the decontamination of equipment containing POPs with solvents, and the physico-chemical treatment of solvents for the recovery of their calorific value, at least once per year using one or a combination of the techniques given below. a. Measurement b. Emissions factors c. Mass balance

BAT 10.	BAT is to periodically monitor odour emissions.			
	 Description Odour emissions can be monitored using: EN standards (e.g. dynamic olfactometry according to EN 13725 in order to determine the odour concentration or EN 16841-1 or -2 in order to determine the odour exposure); when applying alternative methods for which no EN standards are available (e.g. estimation of odour impact), ISO, national or other international standards that ensure the provision of data of an equivalent scientific quality. 			
	The monitoring frequency is determined in the odour management plan (see BAT 12).			
	Applicability The applicability is restricted to cases where an odour nuisance at sensitive receptors is expected and/or has been substantiated.			
BAT 11.	BAT is to monitor the annual consumption of water, energy and raw materials as well as the annual generation of residues and waste water, with a frequency of at least once per year.			
	Description Monitoring includes direct measurements, calculation or recording, e.g. using suitable meters or invoices. The monitoring is broken down at the most appropriate level (e.g. at process or plant/installation level) and considers any significant changes in the plant/installation			

1.3. Emissions to air	BAT 12.	In order to prevent or, where that is not practicable, to reduce odour emissions, BAT
		is to set up, implement and regularly review an odour management plan, as part of
		the environmental management system (see BAT 1), that includes all of the following
		elements:
		- a protocol containing actions and timelines;
		- a protocol for conducting odour monitoring as set out in BAT 10;
		- a protocol for response to identified odour incidents, e.g. complaints;
		- an odour prevention and reduction programme designed to identify the source(s);
		to characterise the contributions of the sources; and to implement prevention
		and/or reduction measures.
		Applicability
		The applicability is restricted to cases where an odour niusance at sensitive
	ВАТ 13	In order to prevent or where that is not practicable to reduce adour emissions BAT
		is to use one or a combination of the techniques given below
		is to use one of a combination of the techniques given below.
		a. Minimising residence times
		b. Using chemical treatment
		c. Optimising aerobic treatment
	ΒΔΤ 1/	In order to prevent or, where that is not practicable, to reduce diffuse emissions to
		air, in particular of dust, organic compounds and odour. BAT is to use an appropriate
		combination of the techniques given below.
		Depending on the risk posed by the waste in terms of diffuse emissions to air, BAT
		14d is especially relevant.
		a. Minimising the number of potential diffuse emissions sources
		 D. Selection and use of high-integrity equipment Correction prevention
		c. Corrosion prevention
		a. Containment, collection and treatment of diffuse emissions:
	1	

		e. Dampening
		f. Maintenance
		g. Cleaning of waste treatment and storage areas
		h. Leak detection and repair (LDAR) programme
	BAT 15.	BAT is to use flaring only for safety reasons or for non-routine operating conditions (e.g. start-ups, shutdowns) by using both of the techniques given below.
		 a. Correct plant design b. Plant management
	BAT 16.	In order to reduce emissions to air from flares when flaring is unavoidable, BAT is to use both of the techniques given below. a. Correct design of flaring devices
1.4. Noise and vibrations	BAT 17.	 In order to prevent or, where that is not practicable, to reduce noise and vibration emissions, BAT is to set up, implement and regularly review a noise and vibration management plan, as part of the environmental management system (see BAT 1), that includes all of the following elements: I. a protocol containing appropriate actions and timelines; II. a protocol for conducting noise and vibration management for some conducting noise and vibration.
		III. a protocol for response to identified noise and vibration events, e.g. complaints;
		IV. a noise and vibration reduction programme designed to identify the source(s), to measure/estimate noise and vibration exposure, to characterise the contributions of the sources and to implement prevention and/or reduction measures.
		Applicability The applicability is restricted to cases where a noise or vibration nuisance at senstitive receptors is expected and/or has been substantiated.

	BAT 18.	In order to prevent or, where that is not practicable, to reduce noise and vibration
		emissions, BAT is to use one or a combination of the techniques given below.
		a. Appropriate location of equipment and buildings
		b. Operational measures
		c. Low-noise equipment
		d. Noise and vibration control equipment
		e. Noise attenuation
1.5. Emissions to water	BAT 19.	In order to optimise water consumption, to reduce the volume of waste water
		generated and to prevent or, where that is not practicable, to reduce emissions to
		soil and water, BAT is to use an appropriate combination of the techniques given
		below.
		(BAT-konklusjoner for utfyllende liste for BAT 19)
		a. Water management
		b. Water recirculation
		c. Impermeable surface
		d. Techniques to reduce the likelihood and impact of overflows and failures from tanks and vessels
		e. Roofing of waste storage and treatment areas
		f. Segregation of water streams
		g. Adequate drainage infrastructure
		h. Design and maintenance provisions to allow detection and repair of leaks
		i. Appropriate buffer storage capacity
	BAT 20.	In order to reduce emissions to water, BAT is to treat waste water using an
		appropriate combination of the techniques given below.

		Preliminary and primary treatment, e.g.
		a. Equalisation
		b. Neutralisation
		c. Physical separation, e.g. screens, sieves, grit separators, grease separators, oil-
		water separation or primary settlement tanks Physico-chemical treatment, e.g.
		d. Adsorption
		e. Distillation/rectification
		f. Chemical precipitation
		g. Chemical oxidation
		h. Chemical reduction
		i. Evaporation
		j. Ion exchange process
		k Strinning
		Biological treatment, e.g.
		I. Activated sludge process
		m. Membrane bioreactor Nitrogen removal
		n. Nitrification/denitrification when the treatment includes a biological treatment
		o Coogulation and flocculation
		n Sedimentation
		a Eiltration (e.g. sand filtration microfiltration ultrafiltration)
		r Elatation
		See Table 6.1 for BAT-associated amissions levels (BAT-AELs) for direct discharges to
		a receiving water body.
		See Table 6.2 for BAT-associated emission levels (BAT-AELs) for indirect discharges to
		a receiving body.
		Se fanen under for tabeller.
1.6. Emissions from accidents	BAT 21.	In order to prevent or limit the environmental consequences of accidents and
and incidents		incidents, BAT is to use all of the techniques given below, as part of the accident
		management plan (see BAT 1).
		a. Protection measures
		b. Management of incidental/accidental emissions

		c. Incident/accident registration and assessment system
1.7. Material efficiency	BAT 22.	In order to use materials efficiently, BAT is to substitute materials with waste.
		Description
		Waste is used instead of other materials for the treatment of wastes (e.g. waste
		alkalis or waste acids are used for pH adjustment, fly ashes are used as binders).
		Applicability
		Some applicability limitations derive from the risks of contamination posed by the
		presence of impurities (e.g. heavy metals, POPs, salts, pathogens) in the waste that
		substitutes other materials. Another limitation is the compatibility of the waste
		substituting other materials with the waste input (see BAT 2).
1.8. Energy efficiency	BAT 23.	In order to use energy efficiently, BAT is to use both of the techniques given below.
		a. Energy efficiency plan
		b. Energy balance record
1.9. Reuse of packaging	BAT 24.	In order to reduce the quantity of waste sent for disposal, BAT is to maximise the
		reuse of packaging, as part of the residues management plan (see BAT 1).
		Description
		Packaging (drums, containers, IBCs, palettes, etc.) is reused for containing waste,
		when it is in good condition and sufficiently clean, depending on a compatibility
		check between the substances contained (in consecutive uses). If necessary,
		packaging is sent for appropriate treatment prior to reuse (e.g. reconditioning,
		cleaning).
		Applicability
		Some applicability restrictions derive from the risks of contamination of the waste
		posed by the reused packaging.

2. BAT CONCLUSIONS FOR THE MECHANICAL TREATMENT OF WASTE		Unless otherwise stated, the BAT conclusions presented in Section 2 apply to the mechanical treatment of waste when it is not combined with biological treatment, and in addition to the general BAT conclusions in Section 1.
2.1. General BAT conclusions for the mechanical treatment of waste		
2.1.1. Emissions to air	BAT 25.	 In order to reduce emissions to air of dust, and of particulate-bound metals, PCDD/F and dioxin-like PCBs, BAT is to apply BAT 14d and to use one or a combination of the techniques given below. a. Cyclone b. Fabric filter c. Wet scrubbing d. Water injection into the shredder See Table 6.3 for BAT-associated emission level (BAT AEL) for channelles dust emissions to air from the mechanical treatment of waste.
2.2. BAT conclusions for the mechanical treatment in shredders of metal waste		Unless otherwise stated, the BAT conclusions presented in this section apply to the mechanical treatment in shredders of metal waste, in addition to BAT 25.
2.2.1. Overall environmental performance	BAT 26.	 In order to improve the overall environmental performance, and to prevent emissions due to accidents and incidents, BAT is to use BAT 14g and all of the techniques given below: a. implementation of a detailed inspection procedure for baled waste before shredding; b. removal of dangerous items from the waste input stream and their safe disposal (e.g. gascylinders, non-depolluted EoLVs, non-depolluted WEEE, items contaminated with PCBsor mercury, radioactive items); c. treatment of containers only when accompanied by a declaration of cleanliness.
2.2.2. Deflagrations	BAT 27.	In order to prevent deflagrations and to reduce emissions when deflagrations occur, BAT is to use technique a. and one or both of the techniques b. and c. given below. a. Deflagration management plan b. Pressure relief dampers c. Pre-shredding

2.2.3. Energy efficiency BAT 28. In order to use energy efficiently, BAT is to keep the shredder feed s	table.
Description	
The shredder feed is equalised by avoiding disruption or overload of	the waste feed
which would lead to unwanted shutdowns and start-ups of the shree	lder.
2.3. BAT conclusions for the Unless otherwise stated, the BAT conclusions presented in this section	on apply to the
treatment of WEEE containing VFCs and/or VHCs, in addition to BAT	25.
VFCs and/or VHCs	
2.3.1. Emissions to air BAT 29. In order to prevent or, where that is not practicable, to reduce emiss	ions of organic
compounds to air, BAT is to apply BAT 14d, BAT 14h and to use techn	nique a. and one
or both of the techniques b. and c. given below.	
a. Optimised removal and capture of refrigerants and oils	
b. Cryogenic condensation:	
C. Ausorption	
See Table 6.4 for BAT-associated emission levels (BAT-AELS) for chain	
CFC emissions to air from the treatment of weee containing vFCs an	u/or vincs.
2.3.2. Explosions BAT 30. In order to prevent emissions due to explosions when treating WEEE	containing VFCs
and/or VHCs, BAT is to use either of the techniques given below.	
a. Inert atmosphere	
b. Forced ventilation	
2.4. BAT conclusions for the	
mechanical treatment of waste	
with calorific value	
2.4.1. Emissions to air BAT 31. In order to reduce emissions to air of organic compounds, BAT is to a	ipply BAT 14d
and to use one or a combination of the techniques given below.	
a. Adsorption	
D. Bioliller	
d. Wet scrubbing	
Geo Table 6 E for PAT associated omission level (PAT AEL) for shanne	
amissions to air from the mechanical treatment of waste with calarif	
emissions to an norm the mechanical treatment of waste with calorin	ic value.

2.5. BAT conclusions for the mechanical treatment of WEEE containing mercury		Unless otherwise stated, the BAT conclusions presented in this section apply to the mechanical treatment of WEEE containing mercury, in addition to BAT 25.
2.5.1. Emissions to air	BAT 32.	In order to reduce mercury emissions to air, BAT is to collect mercury emissions at source, to send them to abatement and to carry out adequate monitoring.
		 Description This includes all of the following measures: equipment used to treat WEEE containing mercury is enclosed, under negative pressureand connected to a local exhaust ventilation (LEV) system ; waste gas from the processes is treated by dedusting techniques such as cyclones, fabricfilters, and HEPA filters, followed by adsorption on activated carbon (see Section 6.6.1); the efficiency of the waste gas treatment is monitored; mercury levels in the treatment and storage areas are measured frequently (e.g. once everyweek) to detect potential mercury leaks. See Table 6.6 for BAT-associated emission level (BAT-AEL) for channelled mercury emission to air from the mechanical treatment of WEEE containing mercury.
3. BAT CONCLUSIONS FOR THE BIOLOGICAL TREATMENT OF WASTE		Unless otherwise stated, the BAT conclusions presented in Section 3 apply to the biological treatment of waste, and in addition to the general BAT conclusions in Section 1. The BAT conclusions in Section 3 do not apply to the treatment of water-
3.1. General BAT conclusions for the biological treatment of waste		

3.1.1. Overall environmental performance	BAT 33.	In order to reduce odour emissions and to improve the overall environmental performance, BAT is to select the waste input.
		Description
		The technique consists of carrying out the pre-acceptance, acceptance, and sorting
		of the waste input (see BAT 2) so as to ensure the suitability of the waste input for
		the waste treatment, e.g. in terms of nutrient balance, moisture or toxic compounds
		which may reduce the hiological activity
3.1.2 Emissions to air	BAT 34.	In order to reduce channelled emissions to air of dust, organic compounds and
		odorous compounds, including H2S and NH3, BAT is to use one or a combination of
		the techniques given below.
		a. Adsorption
		b. Biofilter
		c. Fabric filter
		d. Thermal oxidation
		e. Wet scrubbing
		See Table 6.7 for BAT-associated emission levels (BAT-AELs) for channelled NH3,
		odour, dust and TVOC emissions to air from the biological treatment of waste.
3.1.3. Emissions to water and	BAT 35.	In order to reduce the generation of waste water and to reduce water usage, BAT is
water usage		to use all of the techniques given below.
		a. Segregation of water streams
		b. Water recirculation
		c. Minimisation of the generation of leachate
3.2. BAT conclusions for the		Unless otherwise stated, the BAT conclusions presented in this section apply to the
aerobic treatment of waste		aerobic treatment of waste, and in addition to the general BAT conclusions for the
		biological treatment of waste in Section 3.1.

3.2.1. Overall environmental	BAT 36.	In order to reduce emissions to air and to improve the overall environmental
performance		performance, BAT is to monitor and/or control the key waste and process
·		parameters.
		Description
		Monitoring and/or control of key waste and process parameters, including:
		- waste input characteristics (e.g. C to N ratio, particle size);
		- temperature and moisture content at different points in the windrow;
		- aeration of the windrow (e.g. via the windrow turning frequency, O2 and/or CO2
		concentration in the windrow, temperature of air streams in the case of forced
		aeration);
		- windrow porosity, height and width.
		Applicability
		Monitoring of the moisture content in the windrow is not applicable to enclosed
		processes when health and/or safety issues have been identified. In that case, the
		moisture content can be monitored before loading the waste into the enclosed
3.2.2. Odour and diffuse	BAT 37.	In order to reduce diffuse emissions to air of dust, odour and bioaerosols from open-
emissions to air	_	air treatment steps, BAT is to use one or both of the techniques given below.
		a.Use of semipermeable membrane covers
		b. Adaptation of operations to the meteorological conditions
3.3. BAT conclusions for the		Unless otherwise stated, the BAT conclusions presented in this section apply to the
anaerobic treatment of waste		anaerobic treatment of waste, and in addition to the general BAT conclusions for the
		biological treatment of waste in Section 3.1.

3.3.1. Emissions to air	BAT 38.	In order to reduce emissions to air and to improve the overall environmental performance, BAT is to monitor and/or control the key waste and process parameters.
		 Description Implementation of a manual and/or automatic monitoring system to: ensure a stable digester operation; minimise operational difficulties, such as foaming, which may lead to odour emissions; provide sufficient early warning of system failures which may lead to a loss of containment and explosions.
		 This includes monitoring and/or control of key waste and process parameters, e.g.: pH and alkalinity of the digester feed; digester operating temperature; hydraulic and organic loading rates of the digester feed; concentration of volatile fatty acids (VFA) and ammonia within the digester and digestate; biogas quantity, composition (e.g. H2S) and pressure; liquid and foam levels in the digester.
3.4. BAT conclusions for the mechanical biological treatment (MBT) of waste		Unless otherwise stated, the BAT conclusions presented in this section apply to MBT, and in addition to the general BAT conclusions for the biological treatment of waste in Section 3.1. The BAT conclusions for the aerobic treatment (Section 3.2) and anaerobic treatment (Section 3.3) of waste apply, when relevant, to the mechanical biological treatment of waste
3.4.1. Emissions to air	BAT 39.	In order to reduce emissions to air, BAT is to use both of the techniques given below. a. Segregation of the waste gas streams b. Recirculation of waste gas
4. BAT CONCLUSIONS FOR THE PHYSICO-CHEMICAL TREATMENT OF WASTE		Unless otherwise stated, the BAT conclusions presented in Section 4 apply to the physico-chemical treatment of waste, and in addition to the general BAT conclusions in Section 1.

4.1. BAT conclusions for the physico-chemical treatment of solid and/or pasty waste		
4.1.1. Overall environmental performance	BAT 40.	In order to improve the overall environmental performance, BAT is to monitor the waste input as part of the waste pre-acceptance and acceptance procedures (see BAT 2).
		Description Monitoring the waste input, e.g. in terms of: - content of organics, oxidising agents, metals (e.g. mercury), salts, odorous compounds; - H2 formation potential upon mixing of flue-gas treatment residues, e.g. fly ashes, with
	BAT 41.	In order to reduce emissions of dust, organic compounds and NH3 to air, BAT is to apply BAT 14d and to use one or a combination of the techniques given below. a. Adsorption b. Biofilter c. Fabric filter d. Wet scrubbing See Table 6.8 for BAT-associated emission level (BAT-AEL) for channelled emissions of dust to air from the physico-chemical treatment of solid and/or pasy waste.
4.2. BAT conclusions for the re- refining of waste oil		
4.2.1. Overall environmental performance	BAT 42.	In order to improve the overall environmental performance, BAT is to monitor the waste input as part of the waste pre-acceptance and acceptance procedures (see BAT 2).
		Description Monitoring of the waste input in terms of content of chlorinated compounds (e.g.
	BAT 43.	In order to reduce the quantity of waste sent for disposal, BAT is to use one or both of the techniques given below. a. Material recovery

		b. Energy recovery
4.2.2. Emissions to air	BAT 44.	In order to reduce emissions of organic compounds to air, BAT is to apply BAT 14d and to use one or a combination of the techniques given below. a. Adsorption b. Thermal oxidation c. Wet scrubbing The BAT-AEL set in Section 4.5 applies. The associated monitoring is given in BAT 8.
4.3. BAT conclusions for the		
physico-chemical treatment of		
waste with calorific value		
4.3.1. Emissions to air	BAT 45.	 In order to reduce emissions of organic compounds to air, BAT is to apply BAT 14d and to use one or a combination of the techniques given below. a. Adsorption b. Cryogenic condensation c. Thermal oxidation d. Wet scrubbing The BAT-AEL set in Section 4.5 applies.
4.4. BAT conclusions for the		
regeneration of spent solvents		
4.4.1. Overall environmental performance	BAT 46.	In order to improve the overall environmental performance of the regeneration of spent solvents, BAT is to use one or both of the techniques given below. a. Material recovery b. Energy recovery
4.4.2. Emissions to air	BAT 47.	 In order to reduce emissions of organic compounds to air, BAT is to apply BAT 14d and to use a combination of the techniques given below. a. Recirculation of process off-gases in a steam boiler b. Adsorption c. Thermal oxidation d. Condensation or cryogenic condensation e. Wet scrubbing

		The BAT-AEL set in Section 4.5 applies.
		The associated monitoring is given in BAT 8.
4.5. BAT-AEL for emissions of		See Table 6.9 for BAT-associated emission level (BAT-AEL) for channelled emissions
organic compounds to air from		of TVOC to air from the re-refining of waste oil, the physico-chemical treatment of
the re-refining of waste oil, the		waste with calorific value and the regenration of spent solvents.
physico- chemical treatment of		
waste with calorific value and		
the regeneration of spent		
solvents		
4.6. BAT conclusions for the		
thermal treatment of spent		
activated carbon, waste		
catalysts and excavated		
contaminated soil		
4.6.1. Overall environmental	BAT 48.	In order to improve the overall environmental performance of the thermal
performance		treatment of spent activated carbon, waste catalysts and excavated contaminated
		soil, BAT is to use all of the techniques given below.
		a. Heat recovery from the furnace off-gas
		b. Indirectly fired furnace
		c. Process-integrated techniques to reduce emissions to air
4.6.2. Emissions to air	BAT 49.	In order to reduce emissions of HCl, HF, dust and organic compounds to air, BAT is to
		apply BAT 14d and to use one or a combination of the techniques given below.
		a. Cyclone
		b. Electrostatic precipitator (ESP)
		c. Fabric filter
		d. Wet scrubbing
		e. Adsorption
		t. Condensation
		g. Thermal oxidation
		I ne associated monitoring is given in BAT 8.
4.7. BAT conclusions for the		
water washing of excavated		
contaminated soil		

4.7.1. Emissions to air	BAT 50.	In order to reduce emissions of dust and organic compounds to air from the storage, handling, and washing steps, BAT is to apply BAT 14d and to use one or a combination of the techniques given below. a. Adsorption b. Fabric filter
		c. Wet scrubbing
4.8 BAT conclusions for the		The associated monitoring is given in BAT 8.
decontamination of equipment		
containing PCBs		
4.8.1. Overall environmental	BAT 51.	In order to improve the overall environmental performance and to reduce
performance		channelled emissions of PCBs and organic compounds to air, BAT is to use all of the techniques given below.
		a. Coating of the storage and treatment areas
		b. Implementation of staff access rules to prevent dispersion of contamination
		c. Optimised equipment cleaning and drainage
		d. Control and monitoring of emissions to air
		e. Disposal of waste treatment residues
		f. Recovery of solvent when solvent washing is used
		The associated monitoring is given in BAT 8.
5. BAT CONCLUSIONS FOR THE		Unless otherwise stated, the BAT conclusions presented in Section 5 apply to the
TREATMENT OF WATER-BASED		treatment of water-based liquid waste, and in addition to the general BAT
LIQUID WASTE		conclusions in Section 1.
5.1. Overall environmental	BAT 52.	In order to improve the overall environmental performance, BAT is to monitor the
performance		waste input as part of the waste pre-acceptance and acceptance procedures (see BAT 2).
		Description
		Monitoring the waste input, e.g. in terms of
		- bioeliminability (e.g. BOD, BOD to COD ratio, Zahn-Wellens test, biological inhibition
		notential (e.g. inhibition of activated sludge)):
		- feasibility of emulsion breaking og by means of laboratory-scale tests
5.2. Emissions to air	BAT 53.	In order to reduce emissions of HCl, NH3 and organic compounds to air, BAT is to
		apply BAT 14d and to use one or a combination of the techniques given below.

 a. Adsorption b. Biofilter c. Thermal oxidation d. Wet scrubbing
See Table 6.10 for BAT-associated emission levels (BAT-AELs) for channelled emissions of HCl and TVOC to air from the treatment of water-based liquied waste.

Dato for innfylling:	17.02.2020
Driften er i tråd med dette punktet	Driften er ikke i tråd med dette punktet
beskriv hvordan	 beskriv hvorfor ikke, evt. angi om det ikke er aktuelt.
SO 14001	
SO 14 001	
ntarnkantrallfarskriftan ISO 14001	
Prosedyrer er lagt opp:

a) beskrevet hvem/hva det gjelder for og hvem som er ansvarlig
b) det foreligger en kompetansematrise og opplæring av nyansatt og videreutdanning/oppdatering gjennom året
c) kommunikasjon innad og utad mot abonnentene. Deltakelse i diverse forum/seminar for å tilegne best/ny teknologi.
kompetanseheving, kurs v/endring, ADR, prosedyre endring internt, opplæring

d) blir involvert ved å være med å finne den beste løsningen og tilpasning av løsninger. øvelser. avvikssystemet

e) styringssystemete landax/risk

f) overvåkning, analyseprøver, varsler på gassanlegg, kontroll ved mottak, logging, veiing, overløpskontroll, veiledning
g) løpende avtaler for kontroll og oppfølging; masksiner, vekt, gassnalegg, det elektriske, luftanelgget
h) beredskapsplan, øvelser, kriseplan, industrivern,

verneombud, hms ansvarlig, daglig leder

i) samsvarsvurderinger med handlingsplaner

a) Miljøkontrollprogrammet for gass og sigevanns-analyser, sigevannsmengder

b) avvikssystemet

c) avvikssystemet, logginger, rapporter, sjekklister, analyseresultater

d) eksterne revisjoner (kiwa, FM, arbeidstilsynet, regnskapsrevisjoner, branntilsyn)

Ledelsens gjennomgang

commer, f.eks. materialgjenvinning, krav til HMS i anbud; euro	
5. elkiøretøv. støv/forurensing	
igne program for avslutninger av deponi, krav om etterdriftsfond Arlig benchmarking og kostra rapportering. Materialgjenvinningsskravet iølges opp av egenvurderingen kke relevant Beredskapsplan Avfall tas imot ihht gitt konsesjon, hvor det også er gitt krav til id for mellomlagring, med spesielt fokus på natavfallsrenovasjon, samt omløpstid og renhold. Støy ihht konsesjon	Vibrasjoner: ikke aktuelt, ingen aktiviteter som fører til vibrasjoner
asiskarakterisering gir bakgrunn for deponering, mens farlig rfall sorteres med bakgrunn i avfallsdeklarering og opplært ersonell, batterier sorteres etter batteritype, elektrisk avfall og dninger skilles ut, lyspærer og lysstoffrør skilles ut, vinduer orteres etter type, hvitevarer håndteres for seg og resten orteres ved mottak i restavfall, deponering, hageavfall,	

Meldes inn i egenvurderingen til Fylkesmannen.	
Utstyr og midlertidig lagring er tilpasset behovet, som	
containere (små/store/bunntømte/nedgravde), binger, bur,	
tønner fat osv	
light koncerion	
lilpasset bruk av utstyr	
Eget mottak for farlig avfall.	
Opplært bemanning	
Avfall håndteres i egne nedstrømsfraksioner	
Citring ou lost og ibbt gjoldonde regelverk, blert ernet ADD	
Skring av last og innt gjeldende regelverk, blant annet ADR	
Egnede maskiner/utstyr	

Analyse- og overvåkningsprogram for overvåking av sigevann fra	
deponi.	
Analysene utføres etter en EN standard	
overvåkning av avfakling,	
Ikke aktuell	Ingen kjemisk eller fysisk behandling av løsemidler eller løsemiddelbaserte produkter.

Har ikke noe program for luktmåling. Tas hensyn til ved å ha hurtig omløpshastighet på avfallsfraksjoner. Klager på lukt meldes inn som avvik og følges opp. Det er ikke mottatt noen ekstern klage på lukt. Anses ikke å være et vesentlig miljøaspekt.	
Årlig forbruk av vann og strøm måles og følges opp av de respektive leverandørene for vann og strøm, inkludert kontroll av målerne.	

Se BAT 10.	
Fokus på redusert omløpstid.	Det foregår ingen behandling av avfall ved
Ikke aktuelt.	tilføring av kjemikalier.
Forbud mot deponering av organisk materiale. Aktuelle prosesser involverer tiførsel av luft	
Overdekking av avfall.	
Vedlikeholdsprogram ihht gjeldende krav. Ihht vedlikeholdsprogrammet.	
Er redusert ved overdekking, begrensing av deponimengde,	
forbud mot deponering av organisk materiale og tilpasset anlegg mhp antall brønner og plassering av disse.	
	1

Befuktning av avfall og infrastruktur etter behov i perioder med	
mye tørke.	
Eget vedikenolosprogram uttøres av leverandør for anlegget.	
Skadet utstyr/skade på utstyr repareres fortiøpende.	
Rennold av områder og utstyr utføres innt arbeidsmiljø og	
Internkontrollen.	
Deponigass anlegget overvakes online daglig. Ved unormal drift	
starter alarmen.	
Anlegget er forskriftsmessig utformet.	
Anlegget styres onlie og er tilkoblet alarm.	
Utstyret overvåkes kontinuerlig og tilpasset anlegget.	
Avfakling logges.	
Støy er regulert i konsesjonen.	

Se BAT 17.	
Overvannet er ledet i egne rør utenom sigevannet. Dette videreføres under utbygging. Det er ingen resirkulering av vann per i dag. Det er ønskelig med tette dekker som asfalt og betong, derfor er det planlagt asfaltering og støping av flere områder. Det bygges en overvannsdam for kontroll av vannmengde ut i bekk. Enkelte fraksjoner er under tak, i lukket beholder eller foregår i hall, og det er planlagt mer innbygging av aktiviteter i hall eller med klimavern på en eller flere sider. Overvann og sigevann er fraskilte strømmer. Vann fra vaskehall går via oljeutskiller. Området er regulert med flere kummer og rørkoblinger. Årlig rengjøring og vedlikehold av kummer for å forebygge lekkasjer. Overvannsdammen vil kunne bufre vannet ved store nedbørsmengder.	

	I.
Det er montert oljeutskiller ved vaskehall og farlig avfallsmottak	
Sigevannet sendes til AHSA renseanlegg.	
Sigevannet sendes til AHSA renseanlegg.	
Sigevannet sendes til AHSA renseanlegg.	
Sigevannet sendes til AHSA renseanlegg.	
Sigevannsedimentet skilles ut og sendes ikke videre.	
Kontinuerlig målinger og egenrapportering til Fylkesmannen. Internkontrollforskriften, ISO 14401 sertifisert,	
Industrivernpliktig	

Landax avvikssystem	
Gjendruk av innkomne lettforurensede massser, astalt og	
Ingen energikrevende prosesser. Energien fra deponi samles og	
brukes til oppvarming.	
Energirelaterte aktiviteter vurderes i anbudsprosesser.	
For EE-avfall brukes egne bur og kasser som går i sirkulasjon.	
emballasie.	
Utstrakt bruk av paller og pallekarmer.	
Det er etablert et system for reparasjon av	
renovasjonsbeholdere.	

Ikke relevant Ikke relevant Ikke relevant	
Ved behov vannes avfallet under kverning.	
Ikke relevant	
Ikke relevant	

Ikke relevant	
Ikke relevant da EE-avfall sendes til videre behandling.	
Ikke relevant	
Ikke relevant	

Ikke relevant	
Ikke relevant	
Ikke relevant	

ikke relevant	
likke relevant	
	1

Ikke relevant	
likke relevant	

Ikko rolovant	
Ikke relevant	
Ikke relevant	
Ikke relevant	

Ikke relevant		
Ikke relevant		
lkke relevant		
Ikke relevant		

Ikke relevant	
lkke relevant	
ikke relevant	

Ikke relevant	
Ikke relevant	
Ikke relevant Ikke relevant	

1	I	I

Table 6.1

Table 6.1

BAT-associated emission levels (BAT-AELs) for direct discharges to a receiving water body

Substance/Parameter	BAT-AEL (2)	Waste treatment process to which the BAT-AEL applies
Total organic carbon (TOC) (2)	10-60 mg/l	 All waste treatments except treatment of water-based liquid waste
	10-100 mg/l (3) (4)	— Treatment of water-based liquid waste
Chemical oxygen demand (COD) (2)	30-180 mg/l	 All waste treatments except treatment of water-based liquid waste
	30-300 mg/l (3) (4)	— Treatment of water-based liquid waste
Total suspended solids (TSS)	5-60 mg/l	 All waste treatments
Hydrocarbon oil index (HOI)	0,5-10 mg/l	 Mechanical treatment in shredders of metal waste Treatment of WEEE containing VFCs and/or VHCs Re-refining of waste oil Physico-chemical treatment of waste with calorific value Water washing of excavated contaminated soil Treatment of water-based liquid waste
Total nitrogen (Total N)	1-25 mg/l (5) (6)	 Biological treatment of waste Re-refining of waste oil
	10-60 mg/l (5) (6) (7)	— Treatment of water-based liquid waste
Total phosphorus (Total P)	0,3-2 mg/l	 Biological treatment of waste
	1-3 mg/l (*)	— Treatment of water-based liquid waste
Phenol index	0,05-0,2 mg/l	 Re-refining of waste oil Physico-chemical treatment of waste with calorific value
	0,05-0,3 mg/l	— Treatment of water-based liquid waste
Free cyanide (CN·) (*)	0,02-0,1 mg/l	— Treatment of water-based liquid waste
Adsorbable organically bound halogens (AOX) (*)	0,2-1 mg/l	— Treatment of water-based liquid waste
Substance/Parameter	BAT-AEL (2)	Waste treatment process to which the BAT-AEL

			applies	
	Arsenic (expressed as As)	0,01-0,05 mg/l		
	Cadmium (expressed as Cd)	0,01-0,05 mg/l	 Mechanical treatment in shredders of metal waste 	
	Chromium (expressed as Cr) 0,01-0,15 mg/l — Treatment and/or VH0	 Treatment of WEEE containing VFC and/or VHCs Mechanical biological treatment of waster 		
	Copper (expressed as Cu)	0,05-0,5 mg/l	 Re-refining of waste oil Physico-chemical treatment of waste with 	
	Lead (expressed as Pb)	0,05-0,1 mg/l (%)	calorific value — Physico-chemical treatment of solid	
	Nickel (expressed as Ni)	0,05-0,5 mg/l	and/or pasty waste — Regeneration of spent solvents	
	Mercury (expressed as Hg)	Mercury (expressed as 0,5-5 μg/l soil	- Water washing of excavated contaminated soil	
Metals and metalloids (*)	Zinc (expressed as Zn)	0,1-1 mg/l (1°)		
	Arsenic (expressed as As)	0,01-0,1 mg/l		
	Cadmium (expressed as Cd)	0,01-0,1 mg/l		
	Chromium (expressed as Cr)	0,01-0,3 mg/l		
	Hexavalent chromium (expressed as Cr(VI))	0,01-0,1 mg/l		
	Copper (expressed as Cu)	0,05-0,5 mg/l	- Treatment of water-based liquid waste	
	Lead (expressed as Pb)	0,05-0,3 mg/l		
	Nickel (expressed as Ni)	0,05-1 mg/l		
	Mercury (expressed as Hg)	1-10 µg/l		
	Zinc (expressed as Zn)	0,1-2 mg/l		

 (1) The averaging periods are defined in the General considerations.
 (2) Either the BAT-AEL for COD or the BAT-AEL for TOC applies. TOC monitoring is the preferred option because it does not rely on the use of very toxic compounds.

(3) The upper end of the range may not apply:

when the abtenent efficiency is ≥ 95 % as a rolling yearly average and the waste input shows the following characteristics: TOC > 2 g/l (or COD > 6 g/l) as a daily average and a high proportion of refractory organic compounds (i.e. which are difficult to biodegrade); or

in the case of high chloride concentrations (e.g. above 5 g/l in the waste input).

(*) The BAT-AEL may not apply to plants treating drilling muds/cuttings.
 (5) The BAT-AEL may not apply when the temperature of the waste water is low (e.g. below 12 °C).

(*) The BAT-AEL may not apply in the case of high chloride concentrations (e.g. above 10 g/l in the waste input).
 (7) The BAT-AEL only applies when biological treatment of waste water is used.

(*) The BAT-AELs only apply when the substance concerned is identified as relevant in the waste water inventory mentioned in BAT 3.

(9) The upper end of the range is 0.3 mg/l for mechanical treatment in shredders of metal waste.

(10) The upper end of the range is 2 mg/l for mechanical treatment in shredders of metal waste.

The associated monitoring is given in BAT 7.
Table 6.2

BAT-associated emission levels (BAT-AELs) for indirect discharges to a receiving water body

Subs	tance/Parameter	BAT-AEL (1) (2)	Waste treatment process to which the BAT-AEL applies
Hydrocarbon oil index (HOI)		0,5-10 mg/l	 Mechanical treatment in shredders of metal waste Treatment of WEEE containing VFCs and/or VHCs Re-refining of waste oil Physico-chemical treatment of waste with calorific value Water washing of excavated contaminated soil Treatment of water-based liquid waste
Free cyanide (CN	V -) (3)	0,02-0,1 mg/l	— Treatment of water-based liquid waste
Adsorbable orga (AOX) (3)	anically bound halogens	0,2-1 mg/l	— Treatment of water-based liquid waste
Metals and me- talloids (3)	Arsenic (expressed as As)	0,01-0,05 mg/l	
	Cadmium (expressed as Cd)	0,01-0,05 mg/l	 Mechanical treatment in shredders of metal waste
	Chromium (expressed as Cr)	0,01-0,15 mg/l	 Treatment of WEEE containing VFCs and/or VHCs Mechanical biological treatment of wrate
	Copper (expressed as Cu)	0,05-0,5 mg/l	Re-refining of waste oil Physico-chemical treatment of waste with
	Lead (expressed as Pb)	0,05-0,1 mg/l (*)	 Physico-chemical treatment of solid and/or pasts waste
	Nickel (expressed as Ni)	0,05-0,5 mg/l	 Regeneration of spent solvents Water washing of excavated contaminated
	Mercury (expressed as Hg)	0,5-5 µg/l	soш
	Zinc (expressed as Zn)	0,1-1 mg/l (5)	
	Arsenic (expressed as As)	0,01-0,1 mg/l	
	Cadmium (expressed as Cd)	0,01-0,1 mg/l	— Treatment of water-based liquid waste
	Chromium (expressed	0 01-0 3 mg/l]
Subst	ance/Parameter	BAT-AEL (1) (2)	Waste treatment process to which the BAT-AEL applies
	Hexavalent chromium (expressed as Cr(VI))	0,01-0,1 mg/l	

Copper (expressed as Cu)	0,05-0,5 mg/l
Lead (expressed as Pb)	0,05-0,3 mg/l
Nickel (expressed as Ni)	0,05-1 mg/l
Mercury (expressed as Hg)	1-10 µg/l
Zinc (expressed as Zn)	0,1-2 mg/l

The averaging periods are defined in the General considerations. (1)

- (*) The upper end of the range is 0,3 mg/l for mechanical treatment in shredders of metal waste.
 (5) The upper end of the range is 2 mg/l for mechanical treatment in shredders of metal waste.

 ^(*) The BAT-AELs may not apply if the downstream waste water treatment plant abates the pollutants concerned, provided this does not lead to a higher level of pollution in the environment.
 (*) The BAT-AELs only apply when the substance concerned is identified as relevant in the waste water inventory mentioned in part of the substance concerned is identified as relevant in the waste water inventory mentioned in part of the substance concerned is identified as relevant in the waste water inventory mentioned in part of the substance concerned is identified as relevant in the waste water inventory mentioned in part of the substance concerned is identified as relevant in the waste water inventory mentioned in part of the substance concerned is identified as relevant in the waste water inventory mentioned in part of the substance concerned is identified as relevant in the waste water inventory mentioned in part of the substance concerned is identified as relevant in the waste water inventory mentioned in part of the substance concerned is identified as relevant in the waste water inventory mentioned in part of the substance concerned is identified as relevant in the waste water inventory mentioned in part of the substance concerned is identified as relevant in the waste water inventory mentioned in part of the substance concerned is identified as relevant in the waste water inventory mentioned in part of the substance concerned is identified as relevant in the waste water inventory mentioned in part of the substance concerned is identified as relevant in the waste water inventory mentioned in part of the substance concerned is identified as relevant in the waste water inventory mentioned in part of the substance concerned is identified as relevant in the waste water inventory mentioned in part of the substance concerned is identified as relevant in the waste water inventory mentioned in part of the substance concerned is identified as relevant in the waste water inventory mentioned in part o

BAT 3.

Table 6.3

BAT-associated emission level (BAT-AEL) for channelled dust emissions to air from the mechanical treatment of waste

Parameter	Unit	BAT-AEL (Average over the sampling period)		
Dust	mg/Nm ³	2-5 (¹)		
(i) When a fabric filter is not applicable, the upper end of the range is 10 mg/Nm ³ .				

Table 6.4

BAT-associated emission levels (BAT-AELs) for channelled TVOC and CFC emissions to air from the treatment of WEEE containing VFCs and/or VHCs

Parameter	Unit	BAT-AEL (Average over the sampling period)
түос	mg/Nm ³	3-15
CFCs	mg/Nm ³	0,5-10

Table 6.5

BAT-associated emission level (BAT-AEL) for channelled TVOC emissions to air from the mechanical treatment of waste with calorific value

Parameter	Unit	BAT-AEL (Average over the sampling period)
туос	mg/Nm ³	10-30 (¹)

(¹) The BAT-AEL only applies when organic compounds are identified as relevant in the waste gas stream, based on the inventory mentioned in BAT 3.

Table 6.6

BAT-associated emission level (BAT-AEL) for channelled mercury emissions to air from the mechanical treatment of WEEE containing mercury

Parameter	Unit	BAT-AEL (Average over the sampling period)
Mercury (Hg)	µg/Nm³	2-7

Table 6.7

BAT-associated emission levels (BAT-AELs) for channelled NH3, odour, dust and TVOC emissions to air from the biological treatment of waste

Parameter	Unit	BAT-AEL (Average over the sampling period)	Waste treatment process	
NH ₃ (¹) (²)	mg/Nm3	0,3-20	All biological treatments of waste	
Odour concentration (1) (2)	ou <mark>_</mark> /Nm³	200-1 000		
Dust	mg/Nm3	2-5	Mechanical biological treat-	
туос	mg/Nm3	5-40 (3)	ment of waste	

(¹⁾ Either the BAT-AEL for NH₃ or the BAT-AEL for the odour concentration applies.
 (²⁾ This BAT-AEL does not apply to the treatment of waste mainly composed of manure.
 (³⁾ The lower end of the range can be achieved by using thermal oxidation.

Table 6.8

BAT-associated emission level (BAT-AEL) for channelled emissions of dust to air from the physicochemical treatment of solid and/or pasty waste

Parameter	Unit	BAT-AEL (Average over the sampling period)
Dust	mg/Nm ³	2-5

Table 6.9

BAT-associated emission level (BAT-AEL) for channelled emissions of TVOC to air from the re-refining of waste oil, the physico-chemical treatment of waste with calorific value and the regeneration of spent solvents

Parameter	Unit	BAT-AEL (2) (Average over the sampling period)
туос	mg/Nm ³	5-30
(4) The BAT-AEL does not apply when	the emission load is below 2 kg/h at th	e emission point provided that no CMR

(i) The BAT-AEL does not apply when the emission load is below 2 kg/h at the emission point provided that no CMR substances are identified as relevant in the waste gas stream, based on the inventory mentioned in BAT 3.

Table 6.10

BAT-associated emission levels (BAT-AELs) for channelled emissions of HCl and TVOC to air from the treatment of water-based liquid waste

Parameter	Unit	BAT-AEL (¹) (Average over the sampling period)
Hydrogen chloride (HCl)	mg/Nm ³	1-5
туос		3-20 (²)

(i) These BAT-AELs only apply when the substance concerned is identified as relevant in the waste gas stream, based on the inventory mentioned in BAT 3.
 (c) The upper end of the range is 45 mg/Nm³ when the emission load is below 0,5 kg/h at the emission point.

BAT 7.

	1			Г
Substance/parameter	Standard(s)	Waste treatment process	frequency (²) (²)	
Adsorbable organically bound halogens (AOX) (³) (*)	EN ISO 9562	Treatment of water-based liquid waste	Once every day	
Benzene, toluene, ethylbenzene, xylene (BTEX) (³) (*)	EN ISO 15680	Treatment of water-based liquid waste	Once every month	
Chemical oxygen	No EN standard	All waste treatments except treatment of water-based liquid waste	Once every month	
ucilianu (COD) (-) (-)	available	Treatment of water-based liquid waste	Once every day]
Free cyanide (CN') (3) (4)	Various EN standards available (i.e. EN ISO 14403-1 and -2)	Treatment of water-based liquid waste	Once every day	
Hydrocarbon oil index (HOI) (*)	bon oil index EN ISO 9377-2	Mechanical treatment in shredders of metal waste		
		Treatment of WEEE containing VFCs and/or VHCs		
		Re-refining of waste oil	Once every month	
		Physico-chemical treatment of waste with calorific value		
		Water washing of excavated con- taminated soil		
		Treatment of water-based liquid waste	Once every day	1

Substance/parameter	Standard(s)	Waste treatment process	Minimum monitoring frequency (²) (²)	2
		Mechanical treatment in shredders of metal waste		
		Treatment of WEEE containing VFCs and/or VHCs		
	mium Cr), tel (Ni), n) (3) (4) Various EN standards available (e.g. EN ISO 11885, EN ISO 17294-2, EN ISO 15586)	Mechanical biological treatment of waste		
Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Lead (Pb), Zinc (Zn) (3) (4)		Re-refining of waste oil	Once any mark	
		Physico-chemical treatment of waste with calorific value	Once every month	
		Physico-chemical treatment of solid		

		and/or pasty waste	
		Regeneration of spent solvents	
		Water washing of excavated con- taminated soil	
		Treatment of water-based liquid waste	Once every day
Manganese (Mn) (3) (4)		Treatment of water-based liquid waste	Once every day
Hexavalent chromium (Cr(VI)) (3) (4)	Various EN standards available (i.e. EN ISO 10304-3, EN ISO 23913)	Treatment of water-based liquid waste	Once every day
		Mechanical treatment in shredders of metal waste	Once every month
		Treatment of WEEE containing VFCs and/or VHCs	
		Mechanical biological treatment of waste	
	Various EN standards	Re-refining of waste oil	
Mercury (Hg) (3) (4)	available (i.e. EN ISO 17852, EN ISO 12846)	Physico-chemical treatment of waste with calorific value	
		Physico-chemical treatment of solid and/or pasty waste	
		Regeneration of spent solvents	
		Water washing of excavated con- taminated soil	
		Treatment of water-based liquid waste	Once every day

Substance/parameter	Standard(s)	Waste treatment process	Minimum monitoring frequency (²) (²)	
PFOA (3)	No EN standard available	All waste treatments	Once every six months	
PFOS (3)				
		Re-refining of waste oil		
Phenol index (°)	EN ISO 14402	Physico-chemical treatment of waste with calorific value	Once every month	
		Treatment of water-based liquid waste	Once every day	
		Biological treatment of waste	Once array month	
Total nitrogen (Total N) (°)	EN 12260, EN ISO 11905-1	Re-refining of waste oil	Once every monut	

		Treatment of water-based liquid waste	Once every day
Total organic carbon	c carbon EN 1484	All waste treatments except treatment of water-based liquid waste	Once every month
(100)()()		Treatment of water-based liquid waste	Once every day
	Various EN standards available (i.e. EN ISO 15681-1 and -2, EN ISO 6878, EN ISO 11885)	Biological treatment of waste	Once every month
Total phosphorus (Total P) (°)		Treatment of water-based liquid waste	Once every day
Total suspended solids (TSS) (°) EN 872	All waste treatments except treatment of water-based liquid waste	Once every month	
	Treatment of water-based liquid waste	Once every day	

(1) Monitoring frequencies may be reduced if the emission levels are proven to be sufficiently stable.
 (2) In the case of batch discharge less frequent than the minimum monitoring frequency, monitoring is carried out once per batch.
 (3) The monitoring only applies when the substance concerned is identified as relevant in the waste water inventory mentioned in BAI
 (4) In the case of an indirect discharge to a receiving water body, the monitoring frequency may be reduced if the downstream waste plant abates the pollutant concerned.

(*) In the case of an indirect discharge to a receiving water body, the monitoring inequency may be reduced if the downsheam waster plant abates the pollutants concerned.
 (5) Either TOC or COD is monitored. TOC is the preferred option, because its monitoring does not rely on the use of very toxic comp (*) The monitoring applies only in the case of a direct discharge to a receiving water body.

Monitoring associated with

BAT 20

Monitoring associated with

Monitoring associated with T 3. water treatment

_

pounds.

BAT 8.

Substance/Parameter	Standard(s)	Waste treatment process	Minimum monitoring frequency (¹)	3
Brominated flame retardants (¤)	No EN standard available	Mechanical treatment in shredders of metal waste	Once every year	
Substance/Parameter	Standard(s)	Waste treatment process	Minimum monitoring frequency (1)	3
CFCs	No EN standard available	Treatment of WEEE containing VFCs and/or VHCs	Once every six months	
Dioxin-like PCBs	EN 1948-1, -2,	Mechanical treatment in shredders of metal waste (²)	Once every year	
Divalitati i CD3	and -4 (3)	Decontamination of equipment con- taining PCBs	Once every three months	
		Mechanical treatment of waste		Γ
		Mechanical biological treatment of waste		
Dust	EN 13284-1	Physico-chemical treatment of solid and/or pasty waste	Once every six months	
		Thermal treatment of spent activated carbon, waste catalysts and excavated contaminated soil	months	
		Water washing of excavated con- taminated soil		
HCI	EN 1911	Thermal treatment of spent activated carbon, waste catalysts and excavated contaminated soil (*)	Once every six months	
		Treatment of water-based liquid waste (2)		
HF	No EN standard available	Thermal treatment of spent activated carbon, waste catalysts and excavated contaminated soil (*)	Once every six months	
Hg	EN 13211	Treatment of WEEE containing mer- cury	Once every three months	
H _z S	No EN standard available	Biological treatment of waste (4)	Once every six months	
Metals and metalloids except mercury (e.g. As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Tl, V) (²)	EN 14385	Mechanical treatment in shredders of metal waste	Once every year	
		Biological treatment of waste (4)	Once every six months	
	No EN standard	Physics chamical treatment of solid		Γ

NH ₃	No EN standard available	Physico-chemical treatment of solid and/or pasty waste ${}^{(2)}_{}$	Once every six months	
		Treatment of water-based liquid waste (²)		
Substance/Parameter	Standard(s)	Waste treatment process	Minimum monitoring frequency (1)	3
Odour concentration	EN 13725	Biological treatment of waste (5)	Once every six months	
PCDD/F (*)	EN 1948-1, -2 and -3 (3)	Mechanical treatment in shredders of metal waste	Once every year	
		Mechanical treatment in shredders of metal waste	Once every six months	
		Treatment of WEEE containing VFCs and/or VHCs	Once every six months	
		Mechanical treatment of waste with calorific value (2)	Once every six months Once every six months	
		Mechanical biological treatment of waste		
		Physico-chemical treatment of solid and/or pasty waste (*)		
		Re-refining of waste oil		
туос	EN 12619	Physico-chemical treatment of waste with calorific value	Once every six months	
		Regeneration of spent solvents		
		Thermal treatment of spent activated carbon, waste catalysts and excavated contaminated soil		
		Water washing of excavated con- taminated soil		
		Treatment of water-based liquid waste (²)		
		Decontamination of equipment con- taining PCBs (*)	Once every three months	

⁽¹⁾ Monitoring frequencies may be reduced if the emission levels are proven to be sufficiently stable.
 ⁽²⁾ The monitoring only applies when the substance concerned is identified as relevant in the waste gas stream based on the inventor BAT 3.

(7) Instead of EN 1948-1, sampling may also be carried out according to CEN/TS 1948-5.

- (*) The odour concentration may be monitored instead.
 (5) The monitoring of NH₃ and H₂S can be used as an alternative to the monitoring of the odour concentration.
 (*) The monitoring only applies when solvent is used for cleaning the contaminated equipment.

Monitoring associated with
BAT 25
Monitoring
associated with
BAT 29
BAT 25
BAT 51
BAT 25
BAT 34
BAT 41
BAT 49
BAT 50
BAT 49
DAT 53
BAI 55
BAT 49
BAT 32
BAT 24
DAI 34
BAT 25
BAT 34

BAT 53

Monitoring associated with

BAT 34

BAT 25

BAT 25

BAT 29

BAT 31

BAT 34

BAT 41

BAT 44

BAT 45

BAT 47

BAT 49

BAT 50

BAT 53

BAT 51

ry mentioned in